If it's not what You are looking for type in the equation solver your own equation and let us solve it.
5x+x^2=30
We move all terms to the left:
5x+x^2-(30)=0
a = 1; b = 5; c = -30;
Δ = b2-4ac
Δ = 52-4·1·(-30)
Δ = 145
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(5)-\sqrt{145}}{2*1}=\frac{-5-\sqrt{145}}{2} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(5)+\sqrt{145}}{2*1}=\frac{-5+\sqrt{145}}{2} $
| x-10=3x-24 | | -6-w=4 | | -3x+9=-36 | | 6(x-4)=4x+4 | | (5x-4)=94 | | 0.5x-15=1 | | 5y+9=4(y-3)+7 | | -10(s+3)=-103 | | 12+6x=64 | | 12+6x=61 | | -3x+53=x=25 | | v=(9v-18)^1/2 | | 15x+25=75 | | -3+4x-3=2(2x-3) | | 200x=1,000=250x | | 3(x-3)+4x=7x-4 | | 10x-1÷3=-4 | | 3n-10=7(2+n | | -11x-17=-72 | | 4×+13=x-17 | | 5(a-3)=76 | | x/32=18 | | 2(y+6)=36 | | 49n^2+42n+9=0 | | 4(2l+9)=76 | | 7^7n=58 | | 7(4s+8)=140 | | 13=n+3413=n+34n=n= | | x^2+3x+2=x^2+4x | | 32-x=14 | | 2k^2+7k=4 | | 5-3(2x+1)=8 |